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ABSTRACT
L

\

An expressi'on is derived for the radiometer force which

is valid at pressures from the free-molecule to the hydrodynamic

region. A methol] is presented for obtaining inelastic collision

cross sections (rotational-relaxation times) from the detailed

shape of the radiometer force curve. Some radionleter data are

analyzed to give-the rotational collision numbers for several

gases. These are in reasonable agreement with values obtained

by other methods,
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I. INTRODUCTION

E

Although radiometers and Knudsen gauges have been

investigated for a long time, and several approximate theories

of their behavior have been developed which account for the

major features observed experimentally, nevertheless no

1,2quantitative theory valid in all pressure ranges is known.

3
In a previous paper it was shown how the Knudse_ 2,auge could be

used along with a simple physical theory in the sophomore

laboratory to introduce the students to some molecular collision

phenomena; in this paper we will develop a quantitative theory

of the radiometer force which allows us to do two things. The

first is to derive a formula for the radiometer force which is

valid at all pressures from the free molecule to the hydrodynamic

region. The derivation is made plausible for students by relating

the force to known diffusion phenomena. The second is to develop

a method for obtaining inelastic collision cross sections

(rotational relaxation times) from the detailed shape ef the

radiometer curve.

The above two derivations result from two independent

theories. The first theory relates the radiometer force to

that part of the gaseous heat conductivity due to the translation-

al motion of the molecules, ktr. The second theory relates this

translational heat conductivity to the inelastic collision cross

:!_ section. The fact that the radiometer force is related to ktr

has been known for a long time, 4 but a detailed theory was

: lacking

f
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2

The point of view adopted here to give the first theory

in a plausible and simple way is that the vanes of tile radiometer

constitute one component of a binary gas mixture, the other

component being the true gas. In other words, each vane is

an array of giant molecules linked together. This viewpoint

permits us to take over almost in its entirety tae rigorous

Chapman-Enskog kinetic theory of g3ses. The only medification

necessary is a change of coordinate system to make the heavy

component of the mixture stationary in space. This is

essentially the "dusty gas" model which successfully describes

a number of phenomena connected with gaseous diflusion in porous

media. 5 The final formula giving the radiometer force as a

function of pressure is very similar to the old phenomenological

,t 6
formula of Bruche and Littwin, but contains an extra term

characteristic of the transition pressure region. The presence

of this term does not change the qualitative shape of the

radiometer curve, but is important for quantitative inter-

pretation. The origin of this extra term, which causes a

change of shape in the transition region, lies in the composition

dependence ef the coefficient describing _hermal diffusion in

the gas plus vane mixture. It is from this change of shape

that we are able to derive _.nelastic collision cross sections. !

r

&
L
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3

II. RESULTS

We begin by writing down the general diffusion equation

for a binary mixture, from which we shall obtain the diffusive

component of the vane motion. To this must later be adaed a

term for the viscous component of the motion. The one-

7
dimensional diffusion equation is

2 _12 [_Xl nln2 (m2-ml)
Vl-_2 n L _ _n p= nln 2 _ + np _z

F2 T+ k T (1)pp 8z '

where _i is the diffusion velocity cf species i, n i its number

density (molecules/cm3), x i its mole fraction, mi its molecular

mass, Pi its mass density (g/cm3), and F i the external force

acting on each molecule of species i. The total number of

3 3
molecules per cm is n =n I+ n2, the total mass per cm is

p =nlm l+n2m2' aId the total pressure is p =nkT, where k is

Boltzmann's con:_tant and T is the temperature. The binary

diffusion coefficient is _i2 and the thermal diffusion
ratio

is k T.

There are four terms on the right-hand side of Eq. (I),

each of which has a simple phenomenological interpretation. The

first, proportional to _Xl_/_z, is the usual concentration

diffusion term. The second, proportional _o _ _n p/_z, is the

pressure diffusion term, which describes how a gas mixture in a

i iii!
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E

pressure gladient tends to separate into its components, the

heavy component accumulating in the high-pressure region. The

third, proportional to the F i, is the forced diffusion term,

which describes how molecules diffuse under the influence of

an external driving force. A common example is the motion of

ions through a neutral gas under the inf]uence of an external

electric field. In the present case an external force is

exerted on the radiometer vanes to keep them from moving,

although no external force is applied to the true gas mt,lecules.

The fourth, proportional to b £n T/_z, is the thermal diffusion

term, which describes how a gas mixture in a temperature gradient

tends to separate into its components, the heavy component

usually accumulating in the low-temperature region. The

dimensionless quantity k T is called the thermal diffusion ratio.

The sign convention for k T makes species 1 the heavy component

of the mixture (i.e., the vane in our case).

If we now specialize Eq.(1) to the radlometer, we set

_2 =O and F 2 = 0 because the gas is stationary and ne external

force acts on it. We can also pass to the limit of m2/m I_0.

Furthermore, we note that in Eq.(1) the vanes are counted as

molecules, so that p and p are not the true gas pressure and

density, but rather P2 and P2 are. Also _12 is inversely

proportional to total number density, so that n_12 is density

independent. Making these changes_ and noting that Eq. (I) gives _

only the diffusive motion of the vanes, we obtain

1966088379-006



n
nin2m2 _ _n T -]

pp F1 + kT _z J " (2)

The viscous component of the motion must be given by

a relation similar to Stokes' law,

Vl(viscous) = FI/Ro_ 2 , (3)

where _2 is the gas viscosity and R ° is a geolnetric parameter

characteristic of the vane alone. For spheres R ° is equal
<

to 6zr, where r is the sphere radius. The total motion is then

taken to be the sum of the diffusive and viscous components,

_l(t°tal) = v l(diffusive) + _l(visc°us)" (4)

This simple additivity is often thought to be merely an
!

empirical assumption, made for simplicity and to be justified

by agreement with experiment, It is, in fact, a direct result

of the Chapman-Enskog kinetic theory. To the first order in

small deviations from the Maxwellian equilibrium velocity

distribution there is no direct interaction between diffusion

and viscous flow. (There have to be some deviations from the

Maxwellian distribution to have any transport phenomena or

gradients at all.) Term_ corresponding to a direct interaction

between diffusion and viscosity appear only in the second order

8
of deviations from equilibrium, but to this order the macro-

scopic transport equations are no longer linear. That is,

1966088379-007



6

products Ol first derivatives and second derivative_ of

macroscopic variables appear, and such elaborations d_ not appear

called for on an experimental basis.

Combining Eqs.(_l) and (3) and se£ting vl(tO_al) equal

to zero for stationary vanes, we obtain

n12m1  np1n (n_12) np 7_--z--+ k T _znln 2

Inm2(n_12) 1 I+ F 1 - PP + RoZ_2 = O° (5)

This equation is still some way from 6he desired result, which

is a relation between F ! avid _ _n T/_z involvin_ (_..-_iyproperties

of the gas and geometric e,_nstants of the vane_. :",_re are,

however, five conditions _I...._, we have not yet used , _ich are

just sufficient to convert i@. (5) to the final re '_,_. These

are (I) p = nkT; (2) no gradie_,t of vane dens:,,. :._11/_z =0;

(3) an expression for (n_12) in t_:'_!Lsof _a_. ,'_.ivane

properties ; (4) a similar expression for kTi (5) a relation

between F 1 and _p2/_z based on a force balance.

To obtain the relation between F 1 and _p2/_z, consider

a section of thickness dz and cross-sectional area A. In this

section there are n i Adz vane particles, on each of which is

an external force F i. The total exterv, al force of (n I Adz)F]

on the section iaust be balanced by the force exerted by the gas

pressure. If the pressure on one side is P2 and on the other !

side is P2+dP2, the force due to the gas pressure is AdP2.

1966088379-008
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5
Equating th_se two forces we obtain

(n I Adz) F 1 - AdP2,

or

_P2
_z - nlF 1 . (6)

This is condition (5). All that remains is the exprer]sions for

(n __42 ) and k T •

The expressions for (n_12) and k T come directly from

classical kinetic theory, If the collisi_ns of the gas molecules

on the vanes are elastic, the expression for the diffusion

coefficient is 5'9

½

n_12 3 (_kT) 1 (7)=8 2m2 So(l+Sl2) '

where m2 is the mass of a gas molecule and So is a geometri_

parameter characteristic of the vane. For spheres S o is L

equal to _r 2. rne ratio So/Ro 2 is a pure number whose value

can be calculated for certain simple vane geometries (it is

equal to 1/36_ for spheres). Since its value does aepend on

vane geometry, however, it is better to leave both R° and So

as adjustable constants° The pure number s12 depends on the

geometry of the vane and on the angular scattering pattern with

which molecules rebound from the vane. Very little solid

experimental information on s12 exists, but fortunately its effect

probably cancels out for all but a few very light gases, as

will be shown later. For an idealized model of spherical vanes

1966088379-009
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from which a fraction f of the gas molecules rebound diffusely

according to a cosine law, and a fraction 1-f rebound specularly,

the value of s12 is 4f/9. 9

The above expression for n_12 is only a fixst

approximation, although very accurate. In higher approximations

n_12 depends weakly on the miyture composition, which means

in terms of the present model that it depends slightly on the

5
true gas pressure. Fgr radiometers this dependence is small

and appears only at very low pressures, so we ignore it here.

Indeed. the precise form of Eqo(7) does not really affect our

final results; all that matters is the fact that Eq.(7) has

the form of (constant)x (T/m 2) ½.

The value of kT depends on mixture :composition, that is

on true gas pressure, in a fairly complicated way. The dependence

is roughly quadratic in the mole fraction and can be written as

k T = xix 2 ", _ (8)

where a is called the thermal diffusion factor. The composition

dependence of a is less than that of k T but is not negligible.

It is just this composition dependence of a that produces the

new term that is the distinguishing feature of the present theory.

5, I0
To a very good zpproximation 1/_- is-linear in mole fraction,

so we can write

1 Xl x2 i

= a-L + _ ' (9) _

where a L and aQ are the limiting values at x 1 =1 and x 2 =1,

i

i i i iii i i - , i i i i i i
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respectively. We use the subscript "L" because this limit

corresponds to the famous Lorentzian mixture, an exactly soluble

model devised by H.A. Lorentz to represent the electrons in a

metal. The subscript "Q" stands for "quasi-Lorentzian," because

this limiting mixture has some mathematical features in conuaon

with the Lorentzian model. If the collisions of the gas molecules

with the vanes are elastic and if the angular pattern with which

the molecules rebound is temperature-independent, then the

5,9
expressions for a L and aQ are

1
a L = _ (lOa)

/_ ] 2_ <k2 tr_ (10b)aQ = Q 5n_. 1 k / , ..

2

where k 2 tr is the translational heat conductivity of the. gas.

For monatomie gases k2 tr is related to the viscosity as

-X2 tr = (15r/2/4)(k/m), but for polyatomie gases ?'2 tr is smaller

than this value by an amount which depends on the inelastic

collision cross section.

The above expression for a L is exact, but that for aQ is

an approximation which should usually be accurate to better than

9 '
two percent.

' It is now only necessary to substitute all the foregoing

_. conditions back into Eq. (5) and perform some algebra to obtain

F1 < P2 _ 1 _ n2m2_ _ _n T

: -- I + =- (ll)
_: P2 Ro_2n_12 n p /i _z "
d;

I II I [ I Jl|[
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There has been considerable condensation of terms in going

from Eq.(5) to Eq. (II), but the four terms in Eq. (ii) have the

following origins. The first term in the equation, the unity

inside the parentheses, is a combination of terms representing

composition diffusion, pressure diffusion, and forced diffusion.

The second term, the one involving Ro, is obviously the viscous

term. The third term, involving a, is obvicus!y the thermal

diffusion term, and the fourth term is a combination of

composition and pressure diffusion terms. It is easy to show

that the fourth term n2m2/p is always negligible compared to

a As n2/n 1 ---_O, _ --_a L and n2m2/p -_O; as n2/n 1 --_,

a --->a 0 and n2m2/p --_1. An estimate of the magnitude of aQ

from Eqs. (10b) and (5) shows that it is at least of order 10 6

even f_r vane sizes of micron dimensions, and so n2m2/P<<a .

Dropping this term and substituting for a from Eqs. (9) and (10),

we obtain the final relation for the radiometer force.

Before giving the final expression for the radiometer

force, it is useful to consolidate the notation a little. The

total force is nlF1, which is proportional to the temperature

gradient. We therefore define the total force per unit temperature

gradient to be

T - nlF1/ (_ £n W/_z), (12)

which has the dimensions of a torque per unit volume. We also

define two quantities having the dimensions of pressure,

71 -- 2aQnlkT= (16/15)n18o(I+ Sl2) (2m2kT/z)½(k 2 tr/k), (13a)

i

i
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[ ] ''_2 = RoD2(n_2)=(3/8)_ Ro-}2/So(l+ s12) (_kT/2m2)_ (13b)

With these substitutions Eq.(ll) becomes

T = p/2 = 1/2 (14"

+ 72 '_I/' P _I _I_2

where we have written p instead of P2 for the true gas pressure

since no confusi,_n can now result.

III. COMPARISON WITH EXPERIMENT

It is easy to see that Eq.(14) has the correct

qualitative behavior. At low pressures T is directly proportion-
i

al to pressure,

1 (15a)T =_p ,

and at high pressures T is inversely proportional to pressure,

1
7 = _ _l_2/p. (15b)

At intermediate pressures there is a maximum, with

Pmax = (_i_2) ½ = _2n!Ro/5) (_2kT) (X 2 tr/k)]½ • (16a)

2

L ]-1 (16b)-- -- 7rI 1 + (_i/_2)max 2

The low and high pressure behavior of T can be deduced by very

simple arguments, and Br_cEe and Littwin 6 long ago proposed that

[,

i i _f
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these two limiting forms might be combined in the form,

1
T = (17)

(a/p)+(p/b) '

where a and b are constants. They found that this expression

did give a rather _ood fit of experimental results, but that the

experimental curve of T vs. p was a little flatter and wider

(see Fig. 9 of their paper). Our expression Eq.(14) for T

provides this extra small feature by the presence of the constant

] in the denominator.
term

There is thus assurance that Eq.(14) will fit experimental

results, but it is more interesting to see what physical informa-

tion can be obtained from the parameters _I and -2' which are

found by being adjusted to fit experimental data. The simplest

procedure mathematically would be to measure Pmax' use

measurements on a monatomic gas like argon to determine the

apparatus constant nlR ° in Eq.(16a), and then use measurements

on other gases to determine their Xtr, their values of D being

presumed known. It is difficult to pick out the position of a

maximum without using some sort of a lock-in technique. However,

this means a redesign of the usual radiometer gauge to use these

techniques. Although this can be done, with present equipment

i.

the easiest quantity to measure accurately is Tmax, for which

it is not necessary even to know what the pressure is. From T i
max

can be obtained ktr, and from Xtr can be obtained the inelastic

cross section. At first sight it seems paradoxical that Xtr can
!

!

1966088379-014
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be found from a single measurement of Tmax, inasmuch as the

expression for Tmax involves two parameters, _i and _2" The

reason is that in Eq. (16b) the ratio _1/_2 is almost constant,

and it is the 71 in the numerator that supplies most of the

useful information.

To show this, it is more convenient to work with the

dimensionless ratio (sometimes called the translational Eucken

factor),

ftr _ ktr/_Cv tr' (18)

3 k/m is the translational specific heat of thewhere c V tr =

gas. For monatomic gases ftr =2"50' but for other gases it is

less than 2.50 by an amount which depends on the inelastic cross

section. From Eqs.(13a) and (13b) we find the ratio _i/_2 to be

_I 128 _ nlSo 2(I+ s12) 12 = Cftr (19)_2 - i5-_ H° ftr '

where C is a constant primarily dependent on the vane geometry,

but dependent somewhat on the gas through s12. Except for light

gases like H2 and He, the accommodation coefficients of most gases

are near unity, 1'2 and it is therefore safe to treat s12 as a

constant. Thus if the maximum radiometer forces are measured for

- two gases A and B, the ratio is

TA max A tr _f _ I+(CfB t.?)= , (20)
TB max fB tr l+(Cf Atr )

%

1966088379-015
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from which a satisfactory value of ftr can be calculated with

even a fairly rough estimate of C. For more accuracy it would

be necessary to determine C by measuring T at some Fressure in

addition to the maximum point.

A reasonable value of C can be calculated by imagining

each vane to be composed of an array of spheres in centact.

Then S o= _r 2, Ro= 6_r, and nl_I/8r 3, from which we find

8 2 8 4 2
C _- (I+ s12) _--_45 _ 45 (i + _) = 0.37, (21)

except for very light gases like H2 and He. Only one

calibration measurement with a gas like argon is needed. The

viscosities and molecular masses appearing in Eq.(20) are almost

always known quite accurately.

A check of the literature to find radiometer or Knudsen

gauge measurements with which to test the foregoing calculations

reveals the frustrating fact that many measurements of high

accuracy have apparently been made, but that they are all

reported in the form of small-scale graphs. The accuracy with

which our numerical results can be given is therefore probably

considerably degraded compared to the original mea.surements. The

best graph for the purpose is one given by Br_che an_ Littwin of

T against the mean free path. Since mean free path is
max

proportional to n/m ½ we see from Eq (20) that ftr can be obtained' " i

from such a plot. If we ignore the points for H2 and He, and _

draw a straight line from the origin through the points for Ne

and Ar (to serve as calibration points), we find that all the _'

1966088379-016
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other points fall below this calibration line, indicating that

their values of ftr are less than 2.50, as expected. As nearly

as we can read this graph, the values of ftr are as given in

Table I.

We now come to the second of the two theories mentioned

in the Introduction: the relation between ftr and the inelastic

collision cross section. Unfortunately, this is one of the

more complicated parts of the kinetic theory of gases, ]I'12 since

it depends directly on deviations from the Chapman-Enskog

13
velocity distribution function. No simple physical description

of the effect exists beyond the bald statement that inelastic

collisions interfere with the transport of translational kinetic

energy. To first order the formula can be written as

5 I1 _ (_/Zrot) + "'" I (22)
ftr_

where _ depends on the specific heat and other bulk properties

of the gas, and Zro t is the ratio of the elastic collision

cross section (as determined from viscosity) to the inelastic

collision cross section. Roughly, Zro t can be interpreted as

the number of collisions required to transfer energy between

the rotational and translational degrees of freedom of the

molecules. The full formula is somewhat more complicated, and

14

details of the calculation of Zro t from ftr can be found elsewhere.

The values calculated from the results of Table I are listed in

; Table II. They are in reasonable agreement with values obtained

_ 15 direct heat_ from ultrasonic and shock-tube measurements,

)

i

] 966088379-0] 7
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12 ]6
conducti_'ity measurements, ' and thermal transpiration

14
measurements. If the full accuracy of the original measure-

ments were available, the radiometer effect might be an

excellent method for investigation of inelastic collisions of

polyatomic molecules.

1966088379-018



Table I. Values of the translational Eucken factor

ftr determined from the maximum radiometer force (as', read
f!

from Bruche and Littwin's graph).

Gas f tr

Ne (2.50) a f

Ar (2o50) a

02 2.24

N2 , CO 2.32

CH4 2.10 i
I

N20 , CO2 2.13 i

f
a

Assumed value.

I
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Table II. Values of the inelastic collision number

Zro t calculated from values of ftr"

Gas Zrot
J

0 2 3

N2 , CO 4

CH4 2

N20 , CJ 2 2

f

f

i
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